

Contents lists available at ScienceDirect

Thermochimica Acta

journal homepage: www.elsevier.com/locate/tca

Thermodynamic properties of [binary](http://www.elsevier.com/locate/tca) [mixtures](http://www.elsevier.com/locate/tca) [conta](http://www.elsevier.com/locate/tca)ining tetrahydropyran: Excess molar volumes, excess molar enthalpies and isentropic compressibilities changes of mixing

Rajesh K. Siwach, Dimple, V.K. Sharma[∗]

Department of Chemistry, Maharshi Dayanand University, Rohtak 124001, Haryana, India

article info

Article history: Received 4 December 2009 Received in revised form 23 March 2010 Accepted 30 March 2010 Available online 8 April 2010

Keywords:

Excess molar volumes, V^E Excess molar enthalpies, H^E Isentropic compressibilities changes of mixing, $\kappa_{\mathcal{S}}^E$ Connectivity parameter of third degree, 3ξ Interaction parameter, χ

abstract

Excess molar volumes, V^E , excess molar enthalpies, H^E and speeds of sound, u data of tetrahydropyran (i) + cyclohexane or n-hexane or n-heptane (j) binary mixtures have been measured using dilatometer, calorimeter and interferometer over whole mole fraction range at 308.15 K. Speeds of sound data have been utilized to predict isentropic compressibilities changes of mixing, $\kappa_5^E.$ The analysis of $V^{\rm E}$ in terms of Graph theory reveals that $(i + j)$ mixtures are characterized by dipole-induced dipole interactions between THP and cyclo or n-alkanes to form 1:1 molecular complex. $H^{\rm E}$ and $\kappa_{{\rm S}}^{\rm E}$ data of the investigated mixtures have also been analyzed in terms of Graph theory. V^E, H^E and $\kappa_{{\rm S}}^E$ data predicted by Graph theory compare well with their corresponding experimental values.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

The systematic study of thermodynamic properties has greater importance to extract information about the molecular interactions among the constituents of mixtures. Knowledge of thermodynamic properties is also essential for the proper design of industrial processes. The nature and relative strength of molecular interactions operating among the components of liquid mixtures have been successfully predicted by measuring their thermodynamic properties like excess molar volumes, excess molar enthalpies, excess Gibbs free energies of mixing and isentropic compressibilities changes of mixing and analyzing them in terms of topology of constituents of mixtures, Homomorph concept, UNIFAC, EBGCM, Nagamachi models and Graph theory of liquid mixtures [1–8]. Cyclic ethers represent a class of technically important compounds frequently used as solvent in chemical industry. Tetrahydropyran is used in polymerization processes, pharmaceutical industries as a reaction intermediate [9]. A recent study [10] has shown that tetrahydropyran (i) + aromatic hydrocarbons (i) [binary](#page-5-0) mixtures are characterized by interactions between dipole of tetrahydropyran and π -electron cloud of benzene ring of aromatic hydrocarbons to form 1:1 m[olecu](#page-5-0)lar complex. It [would](#page-5-0) be of interest to see how

∗ Corresponding author. Tel.: +91 1262295012. E-mail address: v_sharmachem58@rediffmail.com (V.K. Sharma).

these interactions are influenced when aromatic hydrocarbons are substituted by cyclo or n-alkanes. These considerations prompted us to measure excess molar volumes, V^E , excess molar enthalpies, H^E and speeds of sound data of THP (*i*) + cyclohexane or n-hexane or n-heptane (i) binary mixtures.

2. Experimental

Tetrahydropyran (THP) (Fluka: >99.5 moles percent purity), cyclohexane (E. Merck: >99 moles percent), n-hexane (E. Merck: > 99.5 moles percent), n-heptane (E. Merck: >99 moles percent) were purified by standard methods [11]. The purities of the purified liquids were checked by measuring their densities using bi-capillary pycnometer (recorded in Table 1) at 298.15 ± 0.01 K and these agreed to within $\pm 5 \times 10^{-5}$ kg m⁻³ with their corresponding literature values [11]. Excess molar volumes, V^E for binary $(i+j)$ mixtures were determined [dilatom](#page-5-0)eterically in the manner described elsewhere [12]. The change in liquid level of dilatometer capillary was me[a](#page-1-0)sured with a [catheto](#page-1-0)meter that could read to ± 0.001 cm. The uncertainties in our measured V^E values are ± 0.5 %.
[Exc](#page-5-0)ess molar enthalpies, H^E for the studied mixtures were

measured by 2-drop calorimeter (model 4600) supplied by the [C](#page-5-0)alorimetery Sciences Corporation (CSC), USA at 308.15 K in a manner described elsewhere [13]. The uncertainties in the measured H^E values are $\pm 1\%$.

^{0040-6031/\$ –} see front matter © 2010 Elsevier B.V. All rights reserved. doi:10.1016/j.tca.2010.03.028

Table 1 Comparison of densities, ρ and speeds of sound, u, of pure liquids with their literature values at 298.15 K.

Liquids	u (ms ⁻¹)		ρ (kg m ⁻³)		
	Exptl	Lit.	Exptl	Lit.	
Tetrahydropyran n-Hexane n-Heptane Cyclohexane	1272 1079 1088 1255	1271.1 [9] 1078.0 [14] 1087.6 [15] 1254.4 [14]	877.23 654.82 679.49 773.94	877.20 [11] 654.84 [11] 679.46 [11] 773.89 [11]	

Speeds of sound, u ([at fre](#page-5-0)quency 2 MHz) in [binar](#page-5-0)y mixtures were measured using a [varia](#page-5-0)ble path interfero[meter](#page-5-0) (Model M 84, Mittal Enterprises, I[ndia\)](#page-5-0) and a measuring c[ell.](#page-5-0) [Th](#page-5-0)e measuring cell was a specially double wall designed cell in which water was circulated to maintain the desired temperature. The speeds of sound values for the purified liquids at $(298.15 \pm 0.01 \text{ K})$ (recorded in Table 1) compare well with their corresponding experimental values [9,14,15]. The uncertainties in the measured speeds of sound values are ± 1 ms⁻¹.

Samples for IR were prepared by mixing i and j components in 1:1 (w/w) ratio and their IR spectra were recorded on a Perkin [Elmer](#page-5-0)-Spectrum RX-I, FTIR spectrometer.

3. Results

The measured excess molar volumes, V^E , excess molar enthalpies, H^E and speeds of sound, u data of tetrahydropyran (i) + cyclohexane, n-hexane and n-heptane (j) binary mixtures over entire composition range at 308.15 K are recorded in Tables 2–4. The isentropic compressibilities, κ_S for $(i+j)$ binary mixtures were determined from their speeds of sound data using relation:

$$
\kappa_S = \left(\rho_{ij} u^2\right)^{-1} \tag{1}
$$

The densities, ρ_{ij} of binary mixtures were evaluated from their excess molar volumes data (reported in Table 2) using Eq. (2):

$$
V^{E} = \sum_{i=i}^{j} x_{i} M_{i} (\rho_{ij})^{-1} - \sum_{i=i}^{j} x_{i} M_{i} (\rho_{i})^{-1}
$$
(2)

where x_i , M_i and ρ_i are the [mole](#page-2-0) [fract](#page-2-0)ion, molar mass and density respectively of component (i) in their binary mixtures. Isentropic compressibilities changes of mixing, κ_S^E for binary mixtures [were](#page-5-0) determined using Eq. (3):

$$
\kappa_S^E = \kappa_S - \kappa_S^{id} \tag{3}
$$

 κ_S^{id} values were obtained in the manner as suggested by Benson and Kiyohara [16].

$$
\kappa_S^{id} = \sum_{i=i}^j \phi_i \left[\kappa_{S,i} + \frac{T v_i \alpha_i^2}{C_{p,i}} \right] - T \left(\sum_{i=i}^j x_i v_i \right) \frac{\left(\sum_{i=i}^j \phi_i \alpha_i \right)^2}{\left(\sum_{i=i}^j x_i C_{p,i} \right)}
$$
(4)

where ϕ_i is the volume fraction of component (i) in the mixed state; $\kappa_{s,i}$, v_i , α_i and $C_{p,i}$ are isentropic compressibility, molar volume, thermal expansion coefficient and molar heat capacity respectively of the pure component (i). The values of α and C_p were taken from literature [17]. α Value for THP was determined in the same manner as described elsewhere [18]. Such κ_S^E values for the studied mixtures are recorded in Table 4. Further V^E , H^E and κ_S^E values for the investigated $(i+j)$ mixtures are plotted in Figs. 1–3. All mea[sured](#page-5-0) thermodynamic properties ($V^{\bar{E}}$, $H^{\bar{E}}$ and $\kappa_{{\bar S}}^E$) have been fitted

Fig. 1. Comparison of excess molar volumes, V^E of (I) tetrahydropyran (i) + n-hexane (j) (\bullet) (\leftarrow) experimental at 308.15 K; (.....) Guillen and Losa [22] at 303.15 K;(II) tetrahydropyran (i) + n-heptane (j) (\blacktriangle) (-) experimental at 308.15 K; (.....) Bravo et al. [24] at 308.15 K;(III) tetrahydropyran (i) + cyclohexane (j) (\blacksquare) ($-$) experimental at 308.15 K; (.....) Brocos et al. [24] at 308.15 K.

Fig. 2. Comparison of excess molar enthalpies, H^E of (I) tetrahydropyran (i) +nhexane (j) (\blacklozenge) (-) experimental at 308.15 K; (.) Castro et al. [21] at 298.15 K; (II) tetrahydropyran (i) + n-heptane (j) (\triangle) (-) experimental at 308.15 K; (.....) Castro et al. [21] at 298.15 K; (III) tetrahydropyran (i) + cyclohexane (j) (\blacksquare) (-) experimental at 308.15 K; (.....) Boukais-Belaribi et al. [20] at 308.15 K.

to Redlich–Kister equation [19]:

$$
X^{E}(X = V \text{ or } H \text{ or } \kappa_{S}) = x_{i}x_{j}[X^{(0)} + X^{(1)}(2x_{i} - 1) + X^{(2)}(2x_{i} - 1)^{2}] \tag{5}
$$

where $X^{(n)}$ (n = 0-2) are the fitting parameters characteristic of (i + j) mixtures. These [param](#page-5-0)eters were determined by fitting $X^{E}(X = V$ or H or κ_s) data to Eq. (5) by the least squares methods. The parame-

Fig. 3. Isentropic compressibilities changes of mixing (I) tetrahydropyran (i) +nhexane (j) (\blacklozenge); (II) tetrahydropyran (i) + n-heptane (j) (\blacktriangle); (III) tetrahydropyran (i) + cyclohexane (j) (\blacksquare).

Table 2 Measured excess molar volumes, V^E data for the various $(i+j)$ mixtures as a function of mole fraction, x_i , of component (i) at 308.15 K. Also included are the densities of binary mixtures predicted from Eq. (2).

x_i	V^{E} (cm ³ mol ⁻¹)	ρ_{ii} (kg m ⁻³)	x_i	V^{E} (cm ³ mol ⁻¹)	ρ_{ij} kg m ⁻³)		
	Tetrahydropyran (i) + n-hexane (j)						
0.0328	0.014	651.0	0.3262	0.066	704.3		
0.0459	0.019	653.2	0.4629	0.062	732.3		
0.0694	0.027	657.2	0.5150	0.058	743.7		
0.0785	0.030	658.7	0.6692	0.042	779.3		
0.1294	0.044	667.6	0.7837	0.028	808.1		
0.1561	0.049	672.3	0.8461	0.020	824.8		
0.2753	0.064	694.4	0.9239	0.010	846.5		
	$V^{(0)} = 0.2377$, $V^{(1)} = -0.1625$, $V^{(2)} = 0.0531$; $\sigma(V^E) = 0.003$ cm ³ mol ⁻¹						
	Tetrahydropyran (i) + n-heptane (i)						
0.0543	0.057	677.9	0.4441	0.265	738.0		
0.1130	0.111	685.8	0.4964	0.268	747.6		
0.2031	0.177	698.7	0.5601	0.264	759.9		
0.2613	0.210	707.5	0.6107	0.255	770.2		
0.2998	0.228	713.5	0.7123	0.220	792.4		
0.3475	0.245	721.3	0.8011	0.172	813.7		
0.3991	0.258	730.0	0.8999	0.098	839.6		
	$V^{(0)} = 1.0722$, $V^{(1)} = -0.0131$, $V^{(2)} = 0.0407$; $\sigma(V^{E}) = 0.001$ cm ³ mol ⁻¹						
	Tetrahydropyran (i) + cyclohexane (i)						
0.0648	0.091	770.2	0.4911	0.322	810.6		
0.1372	0.172	776.5	0.5412	0.314	815.9		
0.1954	0.224	781.8	0.6536	0.276	828.0		
0.2351	0.253	785.5	0.7210	0.240	835.6		
0.3030	0.290	791.9	0.7952	0.190	844.1		
0.3575	0.310	797.2	0.8827	0.117	854.4		
0.4351	0.323	804.9	0.9325	0.070	860.1		
	$V^{(0)} = 1.284$, $V^{(1)} = -0.2179$, $V^{(2)} = 0.0266$; $\sigma(V^{E}) = 0.002$ cm ³ mol ⁻¹						

ters that best fit the experimental data are summarized in Table 5, together with standard deviations, σ (X^E) (X = V or H or κ _S) defined as:

$$
\sigma(X^{E}) = \sum \frac{(X_{\text{expt}}^{E} - X_{\text{calc. Eq. (5)}}^{E})^{2}}{(m - n)^{0.5}}
$$
(6)

where m and n are the number of experimental points and parameters respectively.

Table 3

4. Discussion

Excess molar volumes, V^E values of THP (i) + n-hexane (j) mixtures are lesser (Fig. 1) by 0.004 cm³ mol⁻¹ from the values reported in the literature [22,26] at 303.15 K.Excess molar enthalpies, H^E data of THP (i) + cyclohexane (j) mixtures at 308.15 K agree to within ±10 Jmol⁻¹ (Fig. 2) with their literature values [20]. Further, H^E values of THP (i) + n-hexane or n-heptane (j) mixtures differ by 4[–5%](#page-1-0) [tha](#page-1-0)n the values reported for these mixtures at 298.15 K [21–2[3\].](#page-6-0) [Our](#page-6-0) V^E values for THP (*i*) + cyclohexane or n-heptane (*j*)

Speeds of sound, u, isentropic compressibilities, κ_s and isentropic compressibilities changes of mixing, κ_s^E for the various $(i+j)$ mixtures as a function of mole fraction, x_i of component (i) at 308.15 K.

mixtures differ by $±0.005$ cm³ mol⁻¹ from the V^E values reported for these mixtures in the literature [24,25]. We are unaware of any V^E , H^E and κ_S^E data of the remaining mixtures at 308.15K with which to compare our results. Excess molar enthalpies, H^E data for the studied mixtures are positive over the entire mole fraction range and for an [equimola](#page-6-0)r composition vary in the order: n-heptane > n-hexane > cyclohexane. V^E values are positive for THP (i) + cyclohexane or n-heptane or n-hexane (j) binary mixtures over entire composition. Further $\kappa \frac{E}{S}$ values for THP (*i*) + n-hexane or nheptane (j) are negative and positive for THP (i) + cyclohexane (j) binary mixtures over whole mole fraction range. V^E and κ_S^E data for an equimolar composition vary in the order: cyclohexane > nheptane > n-hexane.

5. Graph theory and results

The addition of THP (i) to cyclohexane or n-heptane or n-hexane (j) may change the topology of (i) or (j) in the mixed state. Excess molar volumes, V^E reflects change in topology of the constituents of the mixtures, so it was worthwhile to analyze the observed V^E data in terms of Graph theory. According to Graph theory [27], V^E is given by:

$$
V^{E} = \alpha_{ij} \left\{ \left[\sum x_i(^{3} \zeta_i)_{\rm m} \right]^{-1} - \left[\sum x_i(^{3} \zeta_i) \right]^{-1} \right\}
$$
 (7)

where α_{ij} is a constant characteristic of $(i+j)$ mixture and x_i is the mole fraction of component (i). $({}^3\xi_i)$ (i=i or j) and $({}^3\xi_i)_{\text{m}}$ (i=i or j) are connectivity parameters of the third degree of (i) and (j) in their pure and mixed state 3ξ are defined [28] by Eq. (8):

$$
{}^{3}\zeta = \sum_{m < n < o < p} (\delta_m^v \, \delta_n^v \, \delta_o^v \, \delta_p^v)^{-0.5} \tag{8}
$$

where δ^{ν}_m has the same si[gnific](#page-6-0)ance described elsewhere [29].

As the degree of association of (i) or (j) is not known with certainty, we regarded these parameters as adjustable parameters and determined them by fitting experimental V^E data of the $(i+j)$ mixtures to Eq. (7). Only those $({}^3\xi_i)$ and $({}^3\xi_i)_{\text{m}}$ (*i* = *i* or *j*) values were retained that best reproduced the experimen[tal](#page-6-0) V^E data. Such V^E values along with $({}^3\xi_i)$ and $({}^3\xi_i)_{\text{m}}$ (*i*=*i* or *j*) for the investigated mixtures at various x_i are recorded in Table 5 and V^E values are compared with their corresponding experimental values. Exami-

Table 5

Comparison of V^E., H^E and κ_5^E values calculated from Eqs. (7) and (15) with their corresponding experimental values at 308.15 K along with their (³ ξ_i) and (³ ξ_i) and (3 ξ_i) and (3 ξ _i) and (3 ξ _i and χ'_{ij} parameters for the various $(i+j)$ mixtures as a function of x_i , mole fraction of component (i).

Property	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9
Tetrahydropyran (i) + n-hexane (j)									
V^E (exptl)	0.036	0.057	0.065	0.065	0.059	0.050	0.038	0.026	0.013
V^E (graph)	0.024	0.042	0.053	0.058		0.055	0.047	0.035	0.019
H^E (exptl)	173	319	433	510	546	537	480	372	213
H^E (graph)	179	324	437	512	$\overline{}$	$\overline{}$	481	375	215
$\kappa_{\rm s}^{\rm E}$ (exptl)	-50.3	-81.2	-97.6	-103.4	-101.3	-93.1	-79.7	-60.7	-34.9
κ_{ς}^{E} (graph)	-43.8	-75.0	-94.6		-102.5		-76.5	-54.3	-28.7
$({}^3\xi_i)$ = $({}^3\xi_i)$ _m = 1.301; $({}^3\xi_j)$ = $({}^3\xi_j)$ _m = 0.957; α_{ij} = -2.803 cm ³ mol ⁻¹ $\chi'_{ii} = 979.9$; $\chi_{ii} = 424.4$ Jmol ⁻¹									
$\chi'_{ii} = -481.1$; $\chi_{12} = 252.4$ TPa ⁻¹									
Tetrahydropyran (i) + n-heptane (j)									
V^E (exptl)	0.100	0.175	0.228	0.258	0.268	0.257	0.225	0.173	0.098
V^E (graph)	0.103	0.181	0.233	0.262		0.253	0.218	0.163	0.090
H ^E (exptl)	191	370	514	608	642	613	524	382	200
H^E (graph)	235	417	544	619	$\overline{}$	$\overline{}$	534	405	227
$\kappa_{\rm s}^{\rm E}$ (exptl)	-7.5	-13.6	-18.2	-21.0	-22.1	-21.4	-18.7	-14.2	-7.9
κ_{ς}^{E} (graph)	-7.7	-13.8	-18.2		22.1		-18.9	-14.6	-8.3
$({}^3\xi_i)$ = $({}^3\xi_i)$ m = 1.302; $({}^3\xi_i)$ = $({}^3\xi_i)$ m = 1.100; α_{ii} = -45.586 cm ³ mol ⁻¹									
$\chi'_{ii} = 2624.2$; $\chi_{ii} = -505.2$ Jmol ⁻¹									
$\chi_{ii} = -83.7 \chi_{ii} = 4.0 \text{ TPa}^{-1}$									
Tetrahydropyran (i) + cyclohexane (j)									
V^E (exptl)	0.133	0.228	0.289	0.319	0.321	0.298	0.252	0.186	0.101
V^E (graph)	0.1093	0.197	0.262	0.304		0.313	0.278	0.215	0.123
H^E (exptl)	203	359	466	524	533	496	418	304	161
H^E (graph)	217	374	476	528	$\overline{}$	$ \,$	421	311	170
$\kappa_{\rm s}^{\rm E}$ (exptl)	7.6	14.7	20.2	23.5	24.2	22.2	18.0	12.1	5.7
$\kappa_{\rm s}^{\rm E}$ (graph)	9.6	16.6	21.2		23.8	$\overline{}$	18.9	14.0	7.7
	$(3\xi_i) = (3\xi_i)_{m} = 1.303$; $(3\xi_j) = (3\xi_j)_{m} = 1.500$; $\alpha_{ij} = -88.616$ cm ³ mol ⁻¹								
$\chi'_{ii} = 2486.9$; $\chi_{ii} = -382.0$ Jmol ⁻¹									
$\chi'_{ii} = 109.7$; $\chi_{ii} = -14.5$ TPa ⁻¹									

nation of Table 5 reveals that predicted V^E values compare well with their experimental values. $({}^3\xi_i)$ and $({}^3\xi_i)_{\text{m}}$ (*i* = *i* or *j*) values thus can be relied upon to extract information about the state of components $(i)/(j)$ in pure and mixed state. Structures were then assumed for THP and their ${}^{3}\xi_{i}$ values were predicted by employing structural considerations [via Eq. (8)]. Any structure or combination of structures that provided 3ξ value which compare well with 3ξ value (determined by Eq. (7)) was taken to be representative structure of THP. We assumed that THP exists as molecular entities I–II (Scheme 1). 3ξ values for these molecular entities were then calculated to be 1.078 [and](#page-3-0) [1](#page-3-0).349. ³ ξ values 1.301, 1.302 and 1.303 [Table 5] suggest that THP exists as associated molecular entity II. Further 3ξ valu[es](#page-3-0) [of](#page-3-0) 1.500, 0.957 and 1.100 for cyclohexane, nhexane and n-heptane [molecular entities (III–V)] suggest that they [exist](#page-5-0) as monomers.

In order to extract information about the state of THP (i) in THP (i) + cyclohexane or n-hexane or n-heptane (j) mixtures, it was assumed that studied mixtures may contain molecular entities VI–VIII and their $3\xi/\text{were}$ calculated to be 1.364, 1.552 and 1.552. In evaluating 3ξ values for molecular entities VI–VIII it was assumed that molecular entity VI is characterized by interactions between oxygen atoms of THP and three axial hydrogen atoms of cyclohexane. Further molecular entities VII–VIII are characterized by interactions between dipole of THP and induced dipole of n-hexane or n-heptane. $({}^3\xi_i)_{\text{m}}$ values of 1.301, 1.302 and 1.303 for THP(*i*) [Table 5] suggest the presence of molecular entities VI–VIII in the investigated mixtures. The postulation of molecular entities VI–VIII reveals that the addition (j) to (i) must change in C–O–C s[tretch](#page-6-0)ing vibrations of THP. In view of this, we analyzed IR spectral data of pure THP(*i*) and THP(*i*) + cyclohexane or n-hexane(*j*) equimolar mixtures. It was observed that characteristic stretching vibrations (C–O–C) at 1090 cm⁻¹ in pure THP [30] shifted to 1106 cm⁻¹ and 1110 cm⁻¹ respectively in THP (i) + cyclohexane or n-hexane (j)

mixtures. The IR spectra data of THP (i) + cyclohexane or n-hexane (j) mixtures thus reveals that addition of (j) to (i) does influence the C–O–C stretching vibrations of THP and also lends additional support to the existence of molecular entities VI–VIII in various $(i+j)$ mixtures.

The energetics and the isentropic compressibilities changes of mixing of the studied mixtures can be studied if it be assumed that THP (i) + cyclohexane or n-hexane or n-heptane (j) mixtures formation involve processes: (1) THP exist an associated molecular entity (i_n) ; (2) formation of unlike contacts between (i_n) and (j) then weakens $i_n - j$ interactions which leads to depolymerization of (i_n) to give monomers of (i) ; (3) monomers of (i) and (j) then undergo dipole–induced dipole interactions to form i:j molecular complex. If χ'_{ii} , χ_{ii} and χ_{12} are molecular interaction energies and molar compressibilities parameters of $i-j$, $i-i$ contacts and dipole-induced dipole interactions respectively, then change in molar thermodynamic properties, $\Delta X (X = H$ or κ_s) due to processes (1–3) would be given by [31–33] by:

$$
\Delta X_1(X = H \text{ or } \kappa_S) = x_i \chi_{ij} S_j \tag{9}
$$

[where](#page-6-0) S_i , the surface fraction of *i*, involved in $(i-j)$ contacts is defined [32] by:

$$
S_j = \frac{x_j v_j}{\sum_{i=i}^{j} x_i v_i}
$$

so that

$$
\Delta X_1(X = H \text{ or } \kappa_S) = \frac{x_i x_j v_j \chi_{ij}}{\sum x_i v_i}
$$
\n(10)

Scheme 1. Connectivity parameters of various molecular entities in pure state.

$$
\Delta X_2(X = H \text{ or } \kappa_S) = \frac{x_i^2 x_j v_j \chi_{ii}}{\sum x_i v_i} \tag{11}
$$

$$
\Delta X_3(X = H \text{ or } \kappa_S) = \frac{x_i x_j^2 \chi_{12}}{\sum x_i v_i}
$$
\n(12)

where v_i is the molar volume of component (j). The overall change in thermodynamic property, X^{E} (X = H or κ_{S}) due to processes (1–3) then can be expressed as Eq. (13):

$$
X^{E} = \sum_{i=1}^{4} \Delta X_{i}(X = H \text{ or } \kappa_{S}) = \frac{x_{i}x_{j}v_{j}}{\sum [x_{i}v_{i}]} [\chi_{ij} + x_{i}\chi_{ij} + x_{j}\chi_{12}] \qquad (13)
$$

For the studied mixtures, if it be assumed that $\chi_{ii} \cong \chi_{ij} = \chi_{ij}'$ then Eq. (13) reduces to Eq. (14):

$$
X^{E} = \frac{x_{i}x_{j}v_{j}}{\sum x_{i}v_{i}}[(1+x_{i})\chi'_{ij} + x_{j}\chi_{12}]
$$
\n(14)

Further $v_j/v_i = {}^3\xi_i/{}^3\xi_j$ [34]; Eq. (14) can, therefore, be expressed as:

$$
X^{E}(X = H \text{ or } \kappa_{S}) = \left[\frac{x_{i}x_{j}(^{3}\xi_{i}/^{3}\xi_{j})}{x_{i} + x_{j}(^{3}\xi_{i}/^{3}\xi_{j})}\right] [(1 + x_{i})\chi'_{ij} + x_{j}\chi_{12}] \tag{15}
$$

Eq. (15) conta[ins](#page-6-0) [tw](#page-6-0)o unknown parameters (χ'_{ii} and χ_{ii})and for the present investigations, we determined these parameters by employing X^E (X=H or κ_S) data at two compositions. Predicted parameters were then utilized to determine $X^{\rm E}$ (X=H or $\kappa_{\rm S}$) data at various values of x_i . Such H^E and κ_S^E values along with χ'_{ii} and χ_{ii} parameters are recorded in Table 5 are also compared with their corresponding experimental values.

A perusal of data in Table 5 reveals that $H^{\rm E}$ and κ_{S}^E values compare well with their corresponding experimental values which lends additional suppo[rt to the a](#page-4-0)ssumptions made in deriving Eq. (14).

Acknowle[dgement](#page-4-0)s

The authors are thankful to the Head, Department of Chemistry and authorities of Maharshi Dayanand University, Rohtak, for providing research facilities.

References

- [1] E. Calvo, P. Brocos, A. Pineiro, M. Pintos, A. Amigo, R. Bravo, A.H. Roux, G. Roux-Desgranges, J. Chem. Eng. Data 44 (1999) 948–954.
- [2] A. Pineiro, A. Olvera, G. Garcia-Miaza, M. Costas, J. Chem. Eng. Data 46 (2001) 1274–1279.
- [3] A. Pineiro, P. Brocos, A. Amigo, M. Pintos, R. Bravo, J. Solut. Chem. 31 (2002) 369–380.
- M. Gepert, S. Ernst, J. Solut. Chem. 32 (2003) 831-852.
- [5] J. Gmehling, B. Schmid, M. Doker, Fluid Phase Equilib. 258 (2) (2007) 115–124.
- [6] M.Y. Nagamachi, A.Z. Francesconi, J. Chem. Thermodyn. 38 (2006) 461–466.
- [7] Dimple, Yadav, Satish Kumar, K.C. Singh, V.K. Sharma, Thermochim. Acta 475 (2008) 8-14.
- [8] V.K. Sharma, S. Kumar, Thermochim. Acta 428 (2005) 83–90.
- [9] C. Valles, E. Perez, M. Cardoso, M. Dominguez, A.M. Mainar, J. Chem. Eng. Data 49 (2004) 1460–1464.
- [10] V.K. Sharma, R.K. Siwach, Dimple, J. Chem. Thermodyn., in press.
- [11] J.A. Riddick,W.B. Bunger, T.K. Sakano, Organic Solvents: Physical Properties and Metthods of Purification, Wiley, New York, 1986.
- [12] P.P. Singh, S.P. Sharma, J. Chem. Eng. Data 30 (1985) 477–479.
- [13] Dimple, J.S. Yadav, K.C. Singh, V.K. Sharma, Thermochim. Acta 468 (2008) 108–115.
- [14] E. Junquera, G. Tardajos, E. Aicart, J. Chem. Thermodyn. 20 (1988) 1461–1467.
- [15] M. Dzida, A. Zak, S. Ernst, J. Chem. Thermodyn. 37 (2005) 405–414.
- [16] G.C. Benson, O. Kiyohara, J. Chem. Thermodyn. 11 (1979) 1061–1064.
- [17] R.C. Weast, Handbook of Chemistry and Physics, CRC, 1987.
- [18] J.H. Hildebrand, J.M Prausnitz, R.L. Scott, Regular and Related Solutions, Van-Nonstand Reinheld Compound, New York, 1971.
- [19] O. Redlich, A.T. Kister, Ind. Eng. Chem. 40 (1948) 345–348.
- [20] G. Boukais-Belaribi, A.H. Mohammadi, F.B. Belaribi, D. Richon, J. Chem. Eng. Data 54 (2009) 2513–2516.
- [21] I. Castro, M. Pintos, A. Amigo, R. Bravo, M.I. Paz Andrade, J. Chem. Thermodyn. 26 (1994) 29–33.
- [22] M.D. Guillen, C.G. Losa, J. Chem. Thermodyn. 10 (1978) 567–576.
- [23] A. Inglese, E. Wilhelm, J.-P.E. Grolier, H.V. Kehiaian, J. Chem. Thermodyn. 12 (1980) 217–222.
- [24] P. Brocos, A. Amigo, M. Pintos, E. Calvo, R. Bravo, Thermochim. Acta 286 (1996) 297–306.
- [25] R. Bravo, M. Pintos, A. Amigo, Can. J. Chem. 73 (1995) 375–379.
- [26] M. Pintos, A. Amigo, R. Bravo, J. Chem. Thermodyn. 25 (1993) 337–341.
- [27] P.P. Singh, V.K. Sharma, S.P. Sharma, Thermochim. Acta 106 (1986) 293–307. [28] P.P. Singh, Thermochim. Acta 66 (1993) 37–73.
-
- [29] L.B. Kier, S.H. Yalkowasky, A.A. Sinkula, S.C. Valvani, Physico-Chemical Properties of Drugs, Mercel Dekker, New York, 1980.
- [30] C.N. Rao, Chemical Application of Infrared Spectroscopy, Academic Press, London, 1963.
- [31] M.L. Huggins, J. Phys. Chem. 74 (1970) 371–378.
- [32] M.L. Huggins, Polymer 12 (1971) 387–399.
- [33] P.P. Singh, M. Bhatia, J. Chem. Soc., Faraday Trans. 185 (1989) 3807–3812.
- [34] P.P. Singh, R.K. Nigam, K.C. Singh, V.K. Sharma, Thermochim. Acta 46 (1981) 175–191.